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Elasticity of randomly diluted central force networks under tension
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We study the rigidity of two-dimensional site-diluted central force triangular networks under tension. We
calculate the shear modulusm directly and fit it with a power law of the formm;(p2p*) f , wherep is the
concentration of sites,p* its critical value, andf the critical exponent. We find that the critical behavior ofm
is quite sensitive to tension. As the tension is increased there is at first a sharp drop in the values of bothp*
and f, followed by a slower decrease towards the values of the diluted Gaussian spring network~or random
resistor network!. We find that the size of the critical region is also sensitive to tension. The tension-free system
has a narrower critical regime with the power law failing forp.0.8. In contrast, a small tension is sufficient
to extend the power law to nearp51. The physical basis for these behaviors is discussed.
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There has been considerable interest in the rigidity of r
dom systems over the last few decades@1–21#. It has become
clear that at zero temperature, the rigidity percolation o
tension-free diluted central force network has a differ
critical point from that of conductivity percolation, contrar
to what de Gennes had suggested@1–10#. On the other hand
recent investigations@12,13,19# showed that at finite tem
perature the entropic component to the shear modulus
central force system does follow de Gennes’ conjecture
sets in at the percolation point and has the same critical
havior as the macroscopic conductances of a randomly di-
luted network of resistors. The entropic component has
origin in the temperature driven entropic force whose eff
on a network is similar to that of a finite stress. It is therefo
natural to think that an elastic network under tension m
have a different critical behavior from the tension-free o
In the limit of networks with zero equilibrium length spring
@which are usually referred to as diluted Gaussian spring
works ~DGSN’s!# the nonvanishing stress-strain stiffness
~or elastic stiffness coefficients! have exactly the same criti
cal behavior as the conductance of the random resistor
work @4,17,18#. This has been shown by Tang and Thor
@4#, and recently more rigorously by Zhouet al. @17# and
Farago and Kantor@18#. It is therefore clear that the critica
behavior ofm must be dependent on the tension. Tang a
Thorpe examined the elasticity of random networks un
tension@5# and showed how the critical point varied from th
tension-free value to the DGSN limit, which is the infini
stress limit, but the behavior of the critical exponent is n
yet clear. In this paper we present a systematic study of
elasticity of two-dimensional stressed random diluted n
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works near the onset of rigidity. This will help us to unde
stand networks in real situations, where stresses are o
present in materials either as applied or internal.

Here is a summary of our findings. The critical behav
of the shear modulus which characterizes the rigidity,m
;(p2p* ) f , is sensitive to tension;p* is the critical value of
the concentrationp, andf the critical exponent. A small ten
sion leads to a fairly large drop ofp* and f, followed by a
slow decrease down to the DGSN values with increas
tension. This suggests that in practice the zero tension
gime might be hard to access. Moreover, the stress it
has a different critical behavior than the shear modulus.
also find that the range of the critical regime, i.e., the
gime where the power law is valid, is also sensitive to te
sion. The tension-free system is very special and has a
rower critical regime. A small tension extends the critic
regime top51.

The system we studied consists of particles tethered
each other through the potential energy

F~r i j !5
1

2
k@ ur i2r j u2r 0#2, ~1!

where, in the undiluted case withp51, the verticesi, j label
nearest neighbor sites on a triangular lattice with an equi
rium spacing ofr 0 and where more distant neighbors a
noninteracting. We begin with an undiluted triangular latti
of lattice constantd and randomly remove (12p)N sites,
whereN is the total number of sites in the undiluted lattic
Following Ref. @5#, we refer to largerd’s as higher tension
cases, although for everyd the stress also varies withp. The
geometric or the conductance percolation of the system
curs at pc50.5. The DGSN with p* 5pc50.5 and f
51.322@17,22# is the limiting case ofd/r 05` or r 050.

To obtainm, we first equilibrated the system with a mo
lecular dynamics simulation at constant volume and cons
©2003 The American Physical Society01-1
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temperatureT50.005kr 0
2/kB to keep the system from falling

into a metastable state. We then carried out a static re
ation. During the relaxation, each particle was displac
through a distance proportional to the force until the ma
mum force fell below a critical value ofFc51027kr 0. We
have also triedFc51029kr 0 and found that the two choice
of Fc make no difference. We imposed a pure shear de
mation Lxd→(11e)Ld, Lyd→Lyd/(11e) on the compu-
tational box, whereLx andLy are numbers of sites in thex
and y directions, respectively. The geometry of our cells
such thatLyd5(A3/2)Lxd5(A3/2)Ld. For isotropic mate-
rials, the stressS and the shear modulus are given by

Sab5
1

A (
i , j

r a~ i j !r b~ i j !
F8

r i j
,

m5
Sxx~e!2Syy~e!

4e
, ~2!

whereA is the area of the system, andr a( i j )5r ia2r j a . In
practice, we have takene560.001 for each sample and av
eraged the results over both calculations to eliminate the
zen initial stress caused by finite size effects. Periodic bou
ary conditions were used throughout to provide the tens
The bulk of these calculations were carried out forpL2 par-
ticles with L ranging from 16 to 144. For a givenp, the
fluctuations from sample to sample are very substantial an
is necessary to average over a large number of diffe
samples to obtain well-converged results, especially in
critical region. For the smallest samples (L516), close to
p* , over 300 realizations were used. For lattices of dim
sion L5144, 15–30 samples are enough. The exact res
for S, m, and energyE for an isotropic undiluted lattice ar
given by @23#

S05A3S 12
r 0

d Dk, m05
A3

4 S 423
r 0

d Dk,

E05
3

2
~d2r 0!2k. ~3!

In Figs. 1, 3, and 4, normalized quantities are given, tha
we plot m/m0 , S/S0, andE/E0.

The results of the normalized shear modulus as a func
of p for diluted lattices of sizeL516, 32, 64, 96, and 144 a
an initial lattice constantd51.0r 0 are displayed in Fig. 1
We performed a least-square fit to find thep* (L) and f (L)
for each sizeL. We then plotted thep* (L) and f (L) vs 1/L
and found that they fall on a straight line, especially t
p* (L), so we made a linear extrapolation to 1/L50 to find
p* and f. We should mention thatp* (144) andf (144) are
already very close to the asymptotic valuesp* and f for all
d’s, so we useup* 2p* (144)u andu f 2 f (144)u as error bars.

In this way, we findp* , and f for the systems withd
5r 0 , 1.05r 0 , 1.3r 0 , 1.5r 0, and 3.0r 0. The results are listed
in Table I and displayed in Fig. 2. As expected, at larged we
obtain values very close to that of the DGSN. From Fig
and Table I we find that bothp* and f decrease smoothly to
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pc50.5 with increasingd. However, the critical behavior is
quite sensitive to tension. For the tension-free system, w
d51.0r 0, we find thatp* 50.7000 andf 51.62. But atd
51.05r 0 , p* and f have dropped top* 50.6009 and f
51.52. With increasing tension there is a slower decreas
p* and f, towards the DSGN values.

Moreover, our results also show that the range of the c
cal regime is sensitive to tension. For the tension-free s
tem, if we fit m up to p51, we obtainp* 50.7101 andf
51.326. Thep* so obtained is very close to results of earli
work which solved the force equations directly and repor
a p* 5pr50.713@3,6#. However, if we fit up top50.8 only,
we obtainp* 50.7000 andf 51.62, a value very close to
that obtained by counting rigid modes for the same sys
up to L51024 @7,8#, p* 5pr50.697 55, andf '1.68. From
Fig. 1, we see that (p20.7000)1.62 provides a very good fit
in the critical regime but is poor forp.0.8 ~for p50.715,
m(L→`)50.010 96, to be compared withm59.5*(p

FIG. 1. The normalized shear modulusm/m0 plotted as a func-
tion of concentrationp of particles for lattices of sizeL516, 32, 64,
96, and 144 atd51.0r 0. The lines represent theL→` distribu-
tions. The solid line is a plot of (p20.7000)1.619 ~a fit till p
50.8). The dashed line is a plot of (p20.7101)1.327~a fit for all
p values!. The inset is a blowup of the region near the critic
densityp*.

TABLE I. Critical concentrations and critical exponents for di
ferentd.

d/r 0 p* f

1.0 0.700060.0006 1.6260.01
1.05 0.600960.0006 1.5260.015
1.1 0.570360.005 1.5060.02
1.3 0.529660.0016 1.4560.010
1.5 0.518560.002 1.4360.02
3.0 0.503160.003 1.3760.02
` 0.5 1.322
1-2
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20.7000)1.6250.010 554). The remaining discrepancy b
tween our results and those of Refs.@7,8# should be due to
our smaller system sizes. In other words, our results sug
that the tension-free system has a narrower critical regim
the power law fails forp.0.8. However, a small tensio
alters the picture and extends the power law so that it wo
well up to aboutp51, as we can see from Fig. 3 for th
system withd51.05r 0. For this system, withL5144, with a
fit up to p51 we got p* (144)50.5947 and f (144)
51.546, and a fit up top50.7 we gotp* (144)50.5951 and
f (144)51.557, and therefore the power law works well f
all p. These results suggest that the tension-free syste
very special in both critical behavior and critical regime.

FIG. 2. The critical concentrationp* and the critical exponents
f of the shear modulus plotted as function of the initial lattice co
stantd.

FIG. 3. The normalized shear modulusm/m0 plotted as a func-
tion of concentrationp of particles for lattices of sizeL516, 32, 64,
96, and 144 atd51.05r 0. The solid line is the function (p
20.6009)1.521, a fit to theL→` values. The inset is a blowup o
the region near the critical densityp* .
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It would also be interesting to know whether the differe
‘‘elastic constants’’@17,24,25# have the same critical behav
ior. One indication as to whether they do is to compare
critical behavior ofS and m. As one expects, atd;r 0, the
effects of a very small stress on the different ‘‘elastic co
stants’’ can be ignored. However, for a moderated we have
to consider their effects. Our results show that ford
.1.05r 0, the values ofS become comparable tom in the
critical regime. Moreover, as can be seen from Fig. 4, ther
a crossover betweenm/m0 andS/S0 at aboutp50.64 for the
system withd51.1r 0. Such crossovers are found for all sy
tem sizes and for 1.05r 0<d<1.30r 0. It follows thatm andS
have clearly and systematically different critical behavio
for thesed8s. For d>1.5r 0, their behaviors become simila
though their values are still different. This is in fact a mu
since a tension-free system has always vanishingSandE but
may have a nonvanishingm, but for an infinitely stressed
system~DGSN!, S and m must have the same behavior.
follows that in the intermediate case, the critical point ofm
should be lower, but gradually closer to that ofSandE with
increasingd, as is confirmed by our data. This in turn su
ports the conclusion that care is required in establishing
difference in behavior of the ‘‘elastic constants’’@24,25# in
the study of critical elasticity.

We do not have enough data to calculate the critical
ponents,n, of the correlation length. However, assuming th
Dp* 5p* (L)2p* ;L21/n @7#, we found thatn should be
close to 1.0, since the variation ofp* (L) with 1/L is consis-
tent with a linear behavior for all systems. In fact, trying
fit the data top* (L)2p* ;L21/n with 0.9,n,1.3, we found
almost the same results forp* ’s. But for n.1.5, the linearity
becomes visibly poor. This is also consistent with the res
that n51.21 for the tension-free system@7# and n5t
51.322@22# for the DGSN.

It is well known thatpr.pc because atpc , the percolat-
ing cluster can still pivot freely at some nodes@2,7,8#. This is
similar to the case of an equilibrium length chain which ca
not resist shear. However, this analogy is not sufficient

-

FIG. 4. The normalized shear modulusm/m0, stressS/S0, and
energyE/E0 plotted as a function of concentrationp of particles for
lattices of sizeL5144 andd51.05r 0. The inset is the blowup of
the critical regime.
1-3
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account for the behavior of the central force system un
tension, since such a straight chain will resist shear o
subject to tension. In fact, our system nearpc is more like a
loose curved chain, a small tension would not be enoug
straighten it out fully so it is still soft. More exactly, in ou
system, for thosep in the range ofp* .p.pc , the percolat-
ing cluster may contain some pieces ofsimplemeandering
paths, defined as paths on which every node connect
others with only two nonparallel bonds. Without tensio
thesesimplemeandering paths cannot resist any shear. W
increasingd, the meandering paths straighten and he
gradually become more rigid, leading to the decrease ofp*
andf. Nearpr , at d5r 0, there are fewsimplepaths, and the
tension is zero. The rigidity is caused by the bonds adde
the simple paths only. With the application of tension, th
meandering paths are straightened, lowering the onset o
gidity. The rigidity is enhanced and its rate of increase
larger (f drops!. By a certain tension (1.05r 0&d), most of
the meandering paths are straightened, and increasing
sion has a diminishing effect on rigidity. The rate of increa
of rigidity with tension is reduced and this leads to a sma
change inp* and f. Temperature has a more immediate
fect. It gives rigidity to the meandering paths because stra
want to crumple to increase the entropy. At any finite te
tt

e
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perature the system has rigidity abovepc and it is Gaussian
for p’s up to p* @12,13#.

In conclusion, our results suggest that the effect of tens
is significant and cannot therefore be neglected when stu
ing rigidity. The idealized situation of zero tension may
hard to probe with the usual combined effects of tempera
and tension. Systems have a bias towards the Gaussian
havior. While we carried out this study for a two-dimension
system, we expect similar results in three dimensions. A
material is usually subject to tension, so our results should
helpful in understanding critical rigidity. Our results may b
instructive for a biopolymer network, such as the cytosk
eton, a partially crosslinked network which governs the el
ticity of cells, since it is in general subject to relative
strong tensionsin vivo @26#. Another example of systems ar
the amorphous and disordered semiconductors. Their rigi
transition has attracted considerable interest@27#. As disor-
dered systems often have internal stresses@28#, their effects
need to be considered.

This work has been supported by the National Scie
Council of the Republic of China under Grant Nos. NS
92-2112-M-032-024 and NSC 91-2112-M008-049, and
Natural Sciences and Engineering Research Council
Canada.
,

@1# P.G. de Gennes, J. Phys.~France! Lett. 37, L1 ~1976!.
@2# S. Feng and P.N. Sen, Phys. Rev. Lett.52, 216 ~1984!.
@3# M.F. Thorpe and E.J. Garboczi, Phys. Rev. B35, 8579~1987!.
@4# W. Tang and M.F. Thorpe, Phys. Rev. B36, 3798~1987!.
@5# W. Tang and M.F. Thorpe, Phys. Rev. B37, 5539~1987!.
@6# S. Arbabi and M. Sahimi, Phys. Rev. B47, 695 ~1993!.
@7# C. Moukarzel and P.M. Duxbury, Phys. Rev. Lett.75, 4055

~1995!.
@8# D.J. Jacobs and M.F. Thorpe, Phys. Rev. E53, 3682~1996!.
@9# C. Moukarzel, P.M. Duxbury, and P.L. Leath, Phys. Rev. Le

78, 1480~1997!.
@10# D.J. Jacobs and M.F. Thorpe, Phys. Rev. Lett.80, 5451~1998!.
@11# For some recent developments seeRigidity Theory and Appli-

cations, edited by M.F. Thorpe and P.M. Duxbury~Plenum
Press, New York, 1998!.

@12# M. Plischke and B. Joo´s, Phys. Rev. Lett.80, 4907~1998!.
@13# M. Plischke, D.C. Vernon, B. Joo´s, and Z. Zhou, Phys. Rev. E

60, 3129~1999!.
@14# P.M. Duxbury, D.J. Jacobs, M.F. Thorpe, and C. Moukarz

Phys. Rev. E59, 2084~1999!.
@15# C. Moukarzel and P.M. Duxbury, Phys. Rev. E59, 2614
.

l,

~1999!.
@16# M.A. de Menezes and C.F. Moukarzel, Phys. Rev. E60, 5699

~1999!.
@17# Z. Zhou, P.-Y. Lai, and B. Joo´s, Phys. Rev. E62, 7490~2000!.
@18# O. Farago and Y. Kantor, Phys. Rev. E62, 6094~2000!.
@19# O. Farago and Y. Kantor, Phys. Rev. Lett.85, 2533 ~2000!;

Europhys. Lett.57, 458 ~2002!.
@20# W. Peng and P.M. Goldbart, Eur. Phys. J. B19, 461 ~2001!.
@21# W. Peng, P.M. Goldbart, and A.J. McKane, Phys. Rev. E64,

031105~2001!.
@22# L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B31,

4725 ~1985!.
@23# Z. Zhou and B. Joo´s, Phys. Rev. B56, 2997~1997!.
@24# Z. Zhou and B. Joo´s, Phys. Rev. B54, 3841~1996!.
@25# Z. Zhou and B. Joo´s, Phys. Rev. B66, 054101~2002!.
@26# D. Boal, Mechanics of the Cell~Cambridge University Press

Cambridge, England, 2002!.
@27# Insulating and Semiconducting Glasses, edited by P. Bool-

chand~World Scientific, Singapore, 2000!.
@28# S. Alexander, Phys. Rep.296, 65 ~1998!.
1-4


