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We study the rigidity of two-dimensional site-diluted central force triangular networks under tension. We
calculate the shear modulysdirectly and fit it with a power law of the fornu~ (p—p*)f, wherep is the
concentration of siteg* its critical value, and the critical exponent. We find that the critical behavior.of
is quite sensitive to tension. As the tension is increased there is at first a sharp drop in the valuepdf both
andf, followed by a slower decrease towards the values of the diluted Gaussian spring n@wakdom
resistor network We find that the size of the critical region is also sensitive to tension. The tension-free system
has a narrower critical regime with the power law failing for 0.8. In contrast, a small tension is sufficient
to extend the power law to near=1. The physical basis for these behaviors is discussed.
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There has been considerable interest in the rigidity of ranworks near the onset of rigidity. This will help us to under-
dom systems over the last few decafies21]. It has become stand networks in real situations, where stresses are often
clear that at zero temperature, the rigidity percolation of goresent in materials either as applied or internal.
tension-free diluted central force network has a different Here is a summary of our findings. The critical behavior
critical point from that of conductivity percolation, contrary Of the shear modulus which characterizes the rigidjty,
to what de Gennes had suggesfiée10]. On the other hand, ~(P—p*)', is sensitive to tensiom* is the critical value of
recent investigation$12,13,19 showed that at finite tem- the concentratiop, andf the critical exponent. A small ten-
perature the entropic component to the shear modulus of $0n leads to a fairly large drop @f* andf, followed by a
central force system does follow de Gennes’ conjecture. [8l0OW decrease down to the DGSN values with increasing
sets in at the percolation point and has the same critical bdension. This suggests that in practice the zero tension re-
havior as the macroscopic Conductamef a random'y d|_ g|me m|ght be hard to access. Moreover, the stress itself
luted network of resistors. The entropic Component has ité]as a diﬁerent Critical behaVior than the Shear mOdu|US. We
origin in the temperature driven entropic force whose effec@lso find that the range of the critical regime, i.e., the re-
on a network is similar to that of a finite stress. It is thereforedime where the power law is valid, is also sensitive to ten-
natural to think that an elastic network under tension maysion. The tension-free system is very special and has a nar-
have a different critical behavior from the tension-free onefower critical regime. A small tension extends the critical
In the limit of networks with zero equilibrium length springs regime top=1.

[which are usually referred to as diluted Gaussian spring net- The system we studied consists of particles tethered to

works (DGSN's)] the nonvanishing stress-strain stiffnesseseach other through the potential energy

(or elastic stiffness coefficienthave exactly the same criti-

cal behavior as the conductance of the random resistor net- D(r; )= EK[|r-—r-|—r 12 1)

work [4,17,18. This has been shown by Tang and Thorpe R R

[4], and recently more rigorously by Zhcet al. [17] and

Farago and Kantdrl8]. It is therefore clear that the critical where, in the undiluted case wifh=1, the vertices, j label

behavior ofu must be dependent on the tension. Tang andiearest neighbor sites on a triangular lattice with an equilib-

Thorpe examined the elasticity of random networks underium spacing ofr, and where more distant neighbors are

tension[5] and showed how the critical point varied from the noninteracting. We begin with an undiluted triangular lattice

tension-free value to the DGSN limit, which is the infinite of lattice constand and randomly remove (2p)N sites,

stress limit, but the behavior of the critical exponent is notwhereN is the total number of sites in the undiluted lattice.

yet clear. In this paper we present a systematic study of thEollowing Ref.[5], we refer to larged’s as higher tension

elasticity of two-dimensional stressed random diluted netcases, although for everythe stress also varies with The
geometric or the conductance percolation of the system oc-
curs at p.=0.5. The DGSN withp*=p.=0.5 and f

*Electronic address: zzhou@mail.tku.edu.tw =1.322[17,22 is the limiting case ofl/ry= orry=0.
"Electronic address: bjoos@science.uottawa.ca To obtainu, we first equilibrated the system with a mo-
*Electronic address: pylai@spl1.phy.ncu.edu.tw lecular dynamics simulation at constant volume and constant
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temperaturd = 0.005<r(2)/k3 to keep the system from falling
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into a metastable state. We then carried out a static relax-
ation. During the relaxation, each particle was displaced

through a distance proportional to the force until the maxi-
mum force fell below a critical value df ;=10 "«r,. We
have also triedr .= 10 °«r, and found that the two choices

of F. make no difference. We imposed a pure shear defor-

mationL,d—(1+¢€)Ld, Lyd—L,d/(1+€) on the compu-
tational box, where., andL, are numbers of sites in the
andy directions, respectively. The geometry of our cells is
such thatL,d=(y/3/2)Ld=(+/3/2)Ld. For isotropic mate-
rials, the stres$§ and the shear modulus are given by

1 O}
Sus=p & Teliralil) T
_ Su(€)=Syy(e)
M=

4e @)

whereA is the area of the system, angl(ij)=r;,—rj,. In
practice, we have takee==0.001 for each sample and av-
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FIG. 1. The normalized shear modulugu plotted as a func-
tion of concentratiom of particles for lattices of size=16, 32, 64,

eraged the results over both calculations to eliminate the fro96, and 144 atl=1.0ro. The lines represent thkf—m distribu-
zen initial stress caused by finite size effects. Periodic boundions. The solid line is a plot of F(—0-7000)1'63927(a fit ill p
ary conditions were used throughout to provide the tension=0-8). The dashed line is a plot op¢0.7101}**{a fit for all

The bulk of these calculations were carried out i par-
ticles with L ranging from 16 to 144. For a givep, the
fluctuations from sample to sample are very substantial and

p values. The inset is a blowup of the region near the critical
densityp*.

it

is necessary to average over a large number of differerc=0.5 with increasingl. However, the critical behavior is
samples to obtain well-converged results, especially in thguite sensitive to tension. For the tension-free system, with

critical region. For the smallest samplels=16), close to

d=1.0ry, we find thatp* =0.7000 andf=1.62. But atd

p*, over 300 realizations were used. For lattices of dimen=1.05,, p* and f have dropped top*=0.6009 andf
sion L=144, 15-30 samples are enough. The exact results 1.52. With increasing tension there is a slower decrease of

for S u, and energyE for an isotropic undiluted lattice are
given by[23]

V3

So= \/5( 1- rd—o) Koo Ho= 5~ 4_3r_0) K,

d

3
Eo=5(d=ro)*k. ©)

In Figs. 1, 3, and 4, normalized quantities are given, that is
we plot u/ g, SISy, andE/E,.

The results of the normalized shear modulus as a functio
of p for diluted lattices of sizé. =16, 32, 64, 96, and 144 at
an initial lattice constand=1.0ry are displayed in Fig. 1.
We performed a least-square fit to find th&e(L) and f(L)
for each sizd_. We then plotted th@* (L) andf(L) vs 1L
and found that they fall on a straight line, especially the
p*(L), so we made a linear extrapolation td_%0 to find
p* andf. We should mention thagh* (144) andf(144) are
already very close to the asymptotic valygs andf for all
d’s, so we usép* —p* (144) and|f—f(144) as error bars.

In this way, we findp*, andf for the systems wittd
=rg, 1.05,, 1.3, 1.5, and 3.0,. The results are listed
in Table | and displayed in Fig. 2. As expected, at ladgee
obtain values very close to that of the DGSN. From Fig. 2
and Table | we find that both* andf decrease smoothly to

p* andf, towards the DSGN values.

Moreover, our results also show that the range of the criti-
cal regime is sensitive to tension. For the tension-free sys-
tem, if we fit u up to p=1, we obtainp* =0.7101 andf
=1.326. Thep* so obtained is very close to results of earlier
work which solved the force equations directly and reported
ap*=p,=0.713[3,6]. However, if we fit up top=0.8 only,
we obtainp* =0.7000 andf=1.62, a value very close to
that obtained by counting rigid modes for the same system
up toL=1024[7,8], p* =p,=0.697 55, and~1.68. From
Fig. 1, we see thatg—0.7000}-2 provides a very good fit
H1 the critical regime but is poor fop>0.8 (for p=0.715,
pn(L—)=0.01096, to be compared withu=9.5*(p

TABLE I. Critical concentrations and critical exponents for dif-

ferentd.

diry p* f

1.0 0.700(&:0.0006 1.620.01
1.05 0.6009-0.0006 1.520.015
1.1 0.570%0.005 1.5@:0.02
1.3 0.5296-0.0016 1.450.010
15 0.5185-0.002 1.430.02
3.0 0.50310.003 1.370.02

o0 0.5 1.322
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FIG. 4. The normalized shear modulpygw,, stressS/S,, and
FIG. 2. The critical concentratiop* and the critical exponents energyE/E, plotted as a function of concentratiprof particles for
f of the shear modulus plotted as function of the initial lattice con-lattices of sizeL =144 andd=1.05,. The inset is the blowup of

stantd. the critical regime.

—0.7000)-9%=0.010554). The remaining discrepancy be- It would also be interesting to know whether the different
tween our results and those of Reffg,8] should be due to “elastic constants]17,24,23 have the same critical behav-
our smaller system sizes. In other words, our results suggel@'- One indication as to whether they do is to compare the
that the tension-free system has a narrower critical regime sgitical behavior ofS and u.. As one expects, al~ro, the

the power law fails forp>0.8. However, a small tension effects of a very small stress on the different “elastic con-
alters the picture and extends the power law so that it workSt@nts” can be ignored. However, for a moderdtee have
well up to aboutp=1, as we can see from Fig. 3 for the to consider their effects. Our results show that for

system withd = 1.05 ,. For this system, with =144, witha ~ 1-0F o, the values ofS become comparable ta in the
fit up to p=1 we got p*(144)=0.5947 and f(144) critical regime. Moreover, as can be seen from Fig. 4, there is

—1.546, and a fit up tp=0.7 we gotp* (144)=0.5951 and & Crossover between/ uy andS/S, at aboutp=0.64 for the

f(144)=1.557, and therefore the power law works well for SyStém withd=1.1r,. Such crossovers are found for all sys-

all p. These results suggest that the tension-free system [€M Sizes and for 1.05=d<1.30,. It follows thatu andS
very special in both critical behavior and critical regime. ~ Nave clearly and systematically different critical behaviors
for thesed’s. Ford=1.5, their behaviors become similar

though their values are still different. This is in fact a must
since a tension-free system has always vanisBiagdE but
may have a nonvanishing, but for an infinitely stressed
system(DGSN), S and u© must have the same behavior. It
follows that in the intermediate case, the critical pointwof
should be lower, but gradually closer to that®&nd E with
increasingd, as is confirmed by our data. This in turn sup-
ports the conclusion that care is required in establishing the
difference in behavior of the “elastic constant?4,25 in

the study of critical elasticity.

We do not have enough data to calculate the critical ex-
ponentsy, of the correlation length. However, assuming that
Ap*=p*(L)—p*~L" ¥ [7], we found thatr should be
close to 1.0, since the variation pf (L) with 1/L is consis-
L=96 . . . .
L=144 tgnt with a linear behaworjor aII. systems. In fact, trying to

fit the data tgp* (L) — p* ~L ~ ¥ with 0.9<»<1.3, we found
L B B LN B | almost the same results fptt’s. But for »>1.5, the linearity
0.6 0.7 0.8 0.9 1.0 becomes visibly poor. This is also consistent with the result
P that v=1.21 for the tension-free systerfi¥] and v=t

FIG. 3. The normalized shear modulugs, plotted as a func- =1.322[22] for the DGSN.
tion of concentratiom of particles for lattices of size=16, 32, 64, It is well known thatp,>p. because ap., the percolat-

96, and 144 atd=1.05,. The solid line is the function  ing cluster can still pivot freely at some nod@s7,8]. This is
—0.6009}-521 a fit to theL— values. The inset is a blowup of similar to the case of an equilibrium length chain which can-
the region near the critical densip*. not resist shear. However, this analogy is not sufficient to

1.0 0.15
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L=32
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account for the behavior of the central force system undeperature the system has rigidity abgvgand it is Gaussian
tension, since such a straight chain will resist shear oncéor p’s up top* [12,13.

subject to tension. In fact, our system ngaris more like a In conclusion, our results suggest that the effect of tension
loose curved chain, a small tension would not be enough tés significant and cannot therefore be neglected when study-

straighten it out fully so it is still soft. More exactly, in our ing rigidity. The idealized situation of zero tension may be
System, for those in the range O'p* >p> Pc, the perc0|at_ hard to prObe with the usual combined effects of temperature

paths, defined as paths on which every node connects feavior. While we carried out this study for a two-dimensional
others with only two nonparallel bonds. Without tension system, we expect similar results in three dimensions. A real

thesesimplemeandering paths cannot resist any shear. Witgﬁtefrila.l is uzuallil smék_)ject t%te?s_io.r:j,ltso 8‘” resulltts shoulg be
increasingd, the meandering paths straighten and henc |ni,teuuct;\?eufr]oregsb?gpcl)rllgrﬁgrIEZI\ZgIrkI ys'ucﬁrarssiﬂesc?t?))ékeel

. . - * L} -
gradually become more rigid, Ieadlng_ o the decreasp”of eton, a partially crosslinked network which governs the elas-
andf. Nearp,, atd=r, there are fewsimplepaths, and the

A Or LT ticity of cells, since it is in general subject to relatively
tension is zero. The rigidity is caused by the bonds added tgtrong tension& vivo [26]. Another example of systems are
the simple paths only. With the application of tension, the

. . . the amorphous and disordered semiconductors. Their rigidity
meandering paths are straightened, lowering the onset of ffzangition has attracted considerable intef@si. As disor-

gidity. The rigidity is enhanced and its rate of increase isyqaq systems often have internal stre$8& their effects
larger (f drops. By a certain tension (1.05=<d), most of .o to be considered.

the meandering paths are straightened, and increasing ten-

sion has a diminishing effect on rigidity. The rate of increase This work has been supported by the National Science
of rigidity with tension is reduced and this leads to a smallerCouncil of the Republic of China under Grant Nos. NSC

change inp* andf. Temperature has a more immediate ef-92-2112-M-032-024 and NSC 91-2112-M008-049, and the
fect. It gives rigidity to the meandering paths because strandSatural Sciences and Engineering Research Council of
want to crumple to increase the entropy. At any finite tem-Canada.
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